Simple Deterministic Selection-Based Genetic Algorithm for Hyperparameter Tuning of Machine Learning Models

Author:

Raji Ismail Damilola,Bello-Salau Habeeb,Umoh Ime Jarlath,Onumanyi Adeiza JamesORCID,Adegboye Mutiu AdesinaORCID,Salawudeen Ahmed TijaniORCID

Abstract

Hyperparameter tuning is a critical function necessary for the effective deployment of most machine learning (ML) algorithms. It is used to find the optimal hyperparameter settings of an ML algorithm in order to improve its overall output performance. To this effect, several optimization strategies have been studied for fine-tuning the hyperparameters of many ML algorithms, especially in the absence of model-specific information. However, because most ML training procedures need a significant amount of computational time and memory, it is frequently necessary to build an optimization technique that converges within a small number of fitness evaluations. As a result, a simple deterministic selection genetic algorithm (SDSGA) is proposed in this article. The SDSGA was realized by ensuring that both chromosomes and their accompanying fitness values in the original genetic algorithm are selected in an elitist-like way. We assessed the SDSGA over a variety of mathematical test functions. It was then used to optimize the hyperparameters of two well-known machine learning models, namely, the convolutional neural network (CNN) and the random forest (RF) algorithm, with application on the MNIST and UCI classification datasets. The SDSGA’s efficiency was compared to that of the Bayesian Optimization (BO) and three other popular metaheuristic optimization algorithms (MOAs), namely, the genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO) algorithms. The results obtained reveal that the SDSGA performed better than the other MOAs in solving 11 of the 17 known benchmark functions considered in our study. While optimizing the hyperparameters of the two ML models, it performed marginally better in terms of accuracy than the other methods while taking less time to compute.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Natural Language Processing: State of The Art, Current Trends and Challenges;Khurana;arXiv,2017

2. Natural language processing: State of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine

3. Optimal Policy Learning for Disease Prevention Using Reinforcement Learning

4. Towards Automatically-Tuned Neural Networks;Mendoza,2016

5. Auto-WEKA

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3