The Influence of the Fire Point on the Thermal Dynamic Disaster in the Goaf

Author:

Chen Xiaokun1,Song Chao1,Zhang Zhipeng1

Affiliation:

1. College of Safety Science and Engineering, Xi’an University of Science and Technology, 58, Yanta Mid. Rd., Xi’an 710054, China

Abstract

A thermal dynamic disaster in the goaf is one of the most serious coal mine disasters formed by coal spontaneous combustion and gas interweaving. However, the influence of the high-temperature hidden fire source formed in the goaf on the evolution law of thermal dynamic disasters is not clear, and effective prevention and control measures cannot be taken. Therefore, this paper uses the experimental platform of thermal dynamic disaster in the goaf to study the influence of different fire point positions on the development of thermal dynamic disaster in the goaf through a similar simulation experiment of thermal dynamic disaster evolution in the goaf and analyzes the corresponding relationship between temperature and CO concentration in the upper corner. The results show that under different locations of heat source, the high-temperature heat source of coal spontaneous combustion migrates to the air leakage side with sufficient oxygen supply, and an oxygen-poor circle is formed near the ignition point. Under the action of air leakage flow, CH4 accumulates in the deep part of the goaf on the return air side. Due to the increase in coal, part of CH4 is produced, which leads to the increase in concentration of CH4 at the ignition point. Under the action of different heat sources, the changing trend of concentration of CO and temperature in the return air corner is the same, but the temperature change in the return air corner shows a lag compared with the change in the concentration of CO, so concentration monitoring of CO can reflect the evolution process of the fire field in the goaf more quickly than temperature monitoring.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3