Identification and Prediction of Thermodynamic Disasters During Deep Coal Mining

Author:

Li Min,Cheng Xiankang

Abstract

Researching the methods to identify and predict thermodynamic disasters during deep coal mining is a very important work for the design of mine emergency systems and the decision-making of mine rescue and personnel evacuation, however, existing studies only built static models without evaluating or predicting the development trend of thermodynamic disasters, the research on dynamic modeling methods and rescue decision-making is insufficient, and they generally ignored the mechanism of mutual conversion between fire and gas explosion in deep coal mines. Thus, this paper aims to study the identification and prediction of thermodynamic disasters during deep coal mining. At first, the method for analyzing the thermal field in deep coal mining areas is introduced in detail, and the finite element thermal analysis method is adopted to study the thermodynamic disasters during deep coal mining; then, this paper establishes a thermodynamic disaster prediction model based on the improved Kernel-based Extreme Learning Machine (KELM), and introduces the improved Crow Search Algorithm (CSA) to solve the instability of prediction results caused by artificial selection of model parameters. At last, this paper uses experimental results to verify the validity of the proposed model.

Publisher

International Information and Engineering Technology Association

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3