Optimising Robot Swarm Formations by Using Surrogate Models and Simulations

Author:

Stolfi Daniel H.1ORCID,Danoy Grégoire2ORCID

Affiliation:

1. Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

2. Faculty of Science, Technology and Medicine, Department of Computer Science and Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Abstract

Optimising a swarm of many robots can be computationally demanding, especially when accurate simulations are required to evaluate the proposed robot configurations. Consequentially, the size of the instances and swarms must be limited, reducing the number of problems that can be addressed. In this article, we study the viability of using surrogate models based on Gaussian processes and artificial neural networks as predictors of the robots’ behaviour when arranged in formations surrounding a central point of interest. We have trained the surrogate models and tested them in terms of accuracy and execution time on five different case studies comprising three, five, ten, fifteen, and thirty robots. Then, the best performing predictors combined with ARGoS simulations have been used to obtain optimal configurations for the robot swarm by using our proposed hybrid evolutionary algorithm, based on a genetic algorithm and a local search. Finally, the best swarm configurations obtained have been tested on a number of unseen scenarios comprising different initial robot positions to evaluate the robustness and stability of the achieved robot formations. The best performing predictors exhibited speed increases of up to 3604 with respect to the ARGoS simulations. The optimisation algorithm converged in 91% of runs and stable robot formations were achieved in 79% of the unseen testing scenarios.

Funder

Luxembourg National Research Fund (FNR)—ADARS Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3