Abstract
Recognizing objects in images requires complex skills that involve knowledge about the context and the ability to identify the borders of the objects. In computer vision, this task is called semantic segmentation and it pertains to the classification of each pixel in an image. The task is of main importance in many real-life scenarios: in autonomous vehicles, it allows the identification of objects surrounding the vehicle; in medical diagnosis, it improves the ability of early detecting of dangerous pathologies and thus mitigates the risk of serious consequences. In this work, we propose a new ensemble method able to solve the semantic segmentation task. The model is based on convolutional neural networks (CNNs) and transformers. An ensemble uses many different models whose predictions are aggregated to form the output of the ensemble system. The performance and quality of the ensemble prediction are strongly connected with some factors; one of the most important is the diversity among individual models. In our approach, this is enforced by adopting different loss functions and testing different data augmentations. We developed the proposed method by combining DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers. The developed solution was then assessed through an extensive empirical evaluation in five different scenarios: polyp detection, skin detection, leukocytes recognition, environmental microorganism detection, and butterfly recognition. The model provides state-of-the-art results.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献