Characterisation of Laser System Power Draws in Materials Processing

Author:

Goffin NicholasORCID,Jones Lewis C. R.ORCID,Tyrer John,Ouyang Jinglei,Mativenga Paul,Woolley ElliotORCID

Abstract

Due to their high speed and versatility, laser processing systems are now commonplace in many industrial production lines. However, as the need to reduce the environmental impact from the manufacturing industry becomes more urgent, there is the opportunity to evaluate laser processing systems to identify opportunities to improve energy efficiencies and thus reduce their carbon footprint. While other researchers have studied laser processing, the majority of previous work on laser systems has focused on the beam–material interaction, overlooking the whole system viewpoint and the significance of support equipment. In this work, a methodical approach is taken to design a set of energy modelling terminologies and develop a structured power metering system for laser systems. A 300 W fibre laser welding system is used to demonstrate the application of the power characterization system by utilizing a purpose-built power meter. The laser is broken down according to sub-system, with each part analysed separately to give a complete overall power analysis, including all auxiliary units. The results show that the greatest opportunities for efficiency improvements lie in the auxiliary units that support the laser devices as these were responsible for a majority of the electrical draw; 63.1% when the laser was operated at 240 W, and increasing as the beam power reduced. The remaining power draw was largely apportioned to electrical supply inefficiencies. In this work, the laser device delivered a maximum of 6% of the total system power. The implications of these results on laser processing system design are then discussed as is the suitability of the characterization process for use by industry on a range of specific laser processing systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. Industrial energy use and carbon emissions reduction: a UK perspective

2. Energy Balance Sheets 2009–2010https://ec.europa.eu/eurostat/documents/3217494/5747681/KS-EN-12-001-EN.PDF/4d084c96-c54a-4149-aed3-e24ae09401a2

3. Enabling technologies for industrial energy demand management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3