Industrial Energy Optimisation: A Laser Cutting Case Study

Author:

Goffin NicholasORCID,Jones Lewis C. R.ORCID,Tyrer John R.ORCID,Ouyang JingleiORCID,Mativenga PaulORCID,Li LinORCID,Woolley ElliotORCID

Abstract

AbstractIn an increasingly technological world, energy efficiency in manufacturing is of great importance. While large manufacturing corporations have the resources to commission energy studies with minimal impact on operations, this is not true for small and medium enterprises (SME’s). These businesses will commonly only have a small number of laser processing cells; thus, to carry out an energy study can be extremely disruptive to normal operations. Since rising global energy costs also have the largest impact on small businesses who lack the benefit of economies of scale, they are simultaneously the most in need of improvements to energy efficiency, while also facing the strongest practical barriers to implementing them. In this study, a laser processing energy analysis methodology was designed to run simultaneously with normal operation and applied to a laser shim-cutting cell in a UK-based SME. This paper demonstrates the methodology for identifying operating states in a production environment and Specific Energy Consumption and Scope 2 CO2 emissions results are analysed. The Processing state itself was the most impactful on overall energy performance, at 55% for single sheets of material, increasing to 71% when batch processing. Generating idealised data in this production environment is challenging with restrictions to isolating variables, these “real-world” limitations for conducting system energy analysis simultaneously with live production are also discussed to present recommendations for further analysis.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3