N-Cameras-Enabled Joint Pose Estimation for Auto-Landing Fixed-Wing UAVs

Author:

Tang Dengqing1ORCID,Shen Lincheng1,Xiang Xiaojia1,Zhou Han1,Lai Jun1ORCID

Affiliation:

1. The College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

We propose a novel 6D pose estimation approach tailored for auto-landing fixed-wing unmanned aerial vehicles (UAVs). This method facilitates the simultaneous tracking of both position and attitude using a ground-based vision system, regardless of the number of cameras (N-cameras), even in Global Navigation Satellite System-denied environments. Our approach proposes a pipeline consisting of a Convolutional Neural Network (CNN)-based detection of UAV anchors which, in turn, drives the estimation of UAV pose. In order to ensure robust and precise anchor detection, we designed a Block-CNN architecture to mitigate the influence of outliers. Leveraging the information from these anchors, we established an Extended Kalman Filter to continuously update the UAV’s position and attitude. To support our research, we set up both monocular and stereo outdoor ground view systems for data collection and experimentation. Additionally, to expand our training dataset without requiring extra outdoor experiments, we created a parallel system that combines outdoor and simulated setups with identical configurations. We conducted a series of simulated and outdoor experiments. The results show that, compared with the baselines, our method achieves 3.0% anchor detection precision improvement and 19.5% and 12.7% accuracy improvement of position and attitude estimation. Furthermore, these experiments affirm the practicality of our proposed architecture and algorithm, meeting the stringent requirements for accuracy and real-time capability in the context of auto-landing fixed-wing UAVs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3