DELOFF: Decentralized Learning-Based Task Offloading for Multi-UAVs in U2X-Assisted Heterogeneous Networks

Author:

Zhu Anqi1,Lu Huimin1ORCID,Ma Mingfang23,Zhou Zongtan1,Zeng Zhiwen1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

2. College of Science, National University of Defense Technology, Changsha 410073, China

3. Yanken School, Yancheng 224100, China

Abstract

With multi-sensors embedded, flexible unmanned aerial vehicles (UAVs) can collect sensory data and provide various services for all walks of life. However, limited computing capability and battery energy put a great burden on UAVs to handle emerging compute-intensive applications, necessitating them to resort to innovative computation offloading technique to guarantee quality of service. Existing research mainly focuses on solving the offloading problem under known global information, or applying centralized offloading frameworks when facing dynamic environments. Yet, the maneuverability of today’s UAVs, their large-scale clustering, and their increasing operation in the environment with unrevealed information pose huge challenges to previous work. In this paper, in order to enhance the long-term offloading performance and scalability for multi-UAVs, we develop a decentralized offloading scheme named DELOFF with the support of mobile edge computing (MEC). DELOFF considers the information uncertainty caused by the dynamic environment, uses UAV-to-everything (U2X)-assisted heterogeneous networks to extend network resources and offloading flexibility, and tackles the joint strategy making related to computation mode, network selection, and offloading allocation for multi-UAVs. Specifically, the optimization problem of multi-UAVs is addressed by the proposed offloading algorithm based on a multi-arm bandit learning model, where each UAV itself can adaptively assess the offloading link quality through the fuzzy logic-based pre-screening mechanism designed. The convergence and effectiveness of the DELOFF proposed are also demonstrated in simulations. And, the results confirm that DELOFF is superior to the four benchmarks in many respects, such as reduced consumed energy and delay in the task completion of UAVs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3