A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling

Author:

Zhao Yuli1,Khayet Mohamed2ORCID,Wang Xu1ORCID

Affiliation:

1. School of Engineering, RMIT University, Bundoora East, VIC 3083, Australia

2. Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain

Abstract

A reliable prediction model can greatly contribute to the research of car seating system vibration control. The novelty of this paper lies in the development of a hybrid method of an artificial neural network (ANN) and response surface methodology (RSM) to predict the peak seat-to-head transmissibility ratio of a seating suspension system and to evaluate its ride comfort for different seat design parameters. Additionally, this method can remove the experimental design of the RSM model. In this paper, four seat design parameters are selected as input parameters and arranged using the central composite design method. The peak transmissibility ratio from seat to head at 4 Hz is chosen as the response target output value. To illustrate this hybrid method, the response target output value of the peak transmissibility ratio is calculated from the frequency response of a five-degrees-of-freedom (5-DOF) lumped-parameter biodynamic seating suspension model. The input design parameters and the response target output values are used to train an ANN to establish the relationship between the seat design parameters and the peak transmissibility ratio. At the same time, the input design parameters and the response target output values predicted by the ANN are used to develop the relationship between the seat design parameters and the peak transmissibility ratio using the response surface method and linear regression models. The hybrid of the ANN and response surface methods makes the planning or design of experiments not essential. The hybrid model of the ANN and response surface method is more accurate and convenient than a linear regression model for the study of seating system vibration isolation.

Funder

Australian Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3