Active Off-Road Seat Suspension System Using Intelligent Active Force Control

Author:

Gohari Mohammad1,Tahmasebi Mona2

Affiliation:

1. Faculty of Mechanical Engineering, Arak University of Technology, Arak, Iran

2. Agricultural and Natural Resources Research and Education Center of Markazi, Arak, Iran

Abstract

Transmitted vibration from vehicles to driver body generates some problems in the long term. Passive and active seat suspensions are used in heavy duty vehicles to reduce unwanted vibration and prevent health problems due to oscillation. Seat suspension must minimize the driver's body displacement and acceleration to increase riding convenience. Active force control (AFC) method is a new technique which is used in active controllers and makes them more accurate. Therefore, this work represents the possibility of applying AFC strategy for an active seat suspension control to increase its robustness. An AFC-based scheme is designed and simulated in MATLAB software. In addition, artificial neural network (ANN) is integrated into the AFC loop to approximate estimated mass of the seat and human body for the proposed controller. The training of ANN with multi-layer feedforward structure is carried out using Levenberg-Marquardt learning algorithm. To evaluate the neuro-AFC control system robustness, the seat is subjected to various types of disturbances. The results of the present study illustrate that the neuro-AFC technique is computationally simple and efficient compared to the classic proportional-integral-derivative (PID) controller in suppressing undesired vibration of heavy duty vehicles' seat. The neuro-AFC scheme is found to demonstrate superior performance for various road profiles compared to pure PID controller, and it can be successfully utilized in heavy duty vehicles such as industrial and agricultural tractors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3