Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase

Author:

Sandré Fidji,Huynh Nina,Gromaire Marie-ChristineORCID,Varrault Gilles,Morin ChristopheORCID,Moilleron RégisORCID,Le Roux JulienORCID,Garrigue-Antar LaureORCID

Abstract

Road runoff (RR) is an important vector of micropollutants towards groundwater and soils, threatening the environment and ecosystems. Through combined chemical and biological approaches, the purpose of this study was to get insights on specific toxicants present in RR from two sites differing by their traffic intensity and their toxicological risk assessment. Non-target screening was performed by HRMS on RR dissolved phase. Ecotoxicological risk was evaluated in a zebrafish embryos model and on rat liver mitochondrial respiratory chain. Specific HRMS fingerprints were obtained for each site, reflecting their respective traffic intensities. Several micropollutants, including 1,3-diphenylguanidine (DPG) and benzotriazole (BZT) were identified in greater concentrations at the high-traffic site. The origin of DPG was confirmed by analyzing HRMS fingerprints from shredded tires. RR samples from each site, DPG and BZT were of relatively low toxicity (no mortality) to zebrafish embryos, but all generated distinct and marked stress responses in the light–dark transition test, while DPG/BZT mixes abolished this effect. The moderate-traffic RR and DPG inhibited mitochondrial complex I. Our study highlights (i) the unpredictability of pollutants cocktail effect and (ii) the importance of a multi-approaches strategy to characterize environmental matrices, essential for their management at the source and optimization of depollution devices.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3