Unveiling the Potential: Selecting Optimal Materials for Physical Pools in a Pavement-Runoff-Integrated Treatment System

Author:

Zhao Haochuang1,Zhou Hongyu1ORCID,Li Ping2,Qian Guoping1,Xu Peng1ORCID,Gong Xiangbing1ORCID,Yu Huanan1ORCID,Li Xi1

Affiliation:

1. National Engineering Laboratory for Highway Maintenance Technology, School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. The Third Construction Co., Ltd. of China Construction Fifth Engineering Bureau, Changsha 410114, China

Abstract

Pavement runoff contains complex pollutants that can lead to environmental pollution and health risks. A pavement-runoff-integrated treatment system has been recognized as an effective way to deal with pavement runoff pollution. However, there is little support for selecting appropriate materials for physical pools due to a lack of understanding of the selective filtration and physical adsorption characteristics. In this study, gravel and activated carbon were chosen as the substrate materials for physical filtration and adsorption pools, and their corresponding purification characteristics were investigated using an indoor scaled down model. The results showed that the removal rate of all pollutants was related to the size of the gravel used. This was mainly due to the increased gravel particle size and voids, which resulted in a higher water velocity, shorter hydraulic retention time, and inadequate filtration. Compared with coconut shell granular activated carbon (GAC) and coal column activated carbon (EAC), analytically pure granular activated carbon (ARAC) showed a better removal rate for petroleum and heavy metals. This is mainly because ARAC has a larger specific surface area, higher pore volume, and wider pore size distribution, resulting in a remarkable adsorption capacity for pollutants. Overall, the combination of 0.3 mm gravel and ARAC was found to be the most suitable for use as filtration and adsorption materials for physical pools. These findings offer a gravel- and ARAC-based pavement-runoff-integrated treatment system, which has excellent potential to enhance the removal of pollutants from pavement runoff.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Engineering Laboratory of Highway Maintenance Technology

Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3