Abstract
An artificial neural network (ANN) model was designed to predict the tensile properties in high-strength, low-carbon bainitic steels with a focus on the fraction of constituents such as PF (polygonal ferrite), AF (acicular ferrite), GB (granular bainite), and BF (bainitic ferrite). The input parameters of the model were the fraction of constituents, while the output parameters of the model were composed of the yield strength, yield-to-tensile ratio, and uniform elongation. The ANN model to predict the tensile properties exhibited a higher accuracy than the multi linear regression (MLR) model. According to the average index of the relative importance for the input parameters, the yield strength, yield-to-tensile ratio, and uniform elongation could be effectively improved by increasing the fraction of AF, bainitic microstructures (AF, GB, and BF), and PF, respectively, in terms of the work hardening and dislocation slip behavior depending on their microstructural characteristics such as grain size and dislocation density. The ANN model is expected to provide a clearer understanding of the complex relationships between constituent fraction and tensile properties in high-strength, low-carbon bainitic steels.
Funder
Technology Innovation Program
National Research Foundation of Korea
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献