A comparative assessment of artificial neural network and regression models to predict mechanical properties of continuously cooled low carbon steels: an external data analysis approach

Author:

Alan Emre1ORCID,Ayhan İsmail İrfan2ORCID,Ögel Bilgehan3ORCID,Uzunsoy Deniz1ORCID

Affiliation:

1. BURSA TECHNICAL UNIVERSITY

2. ÇEMTAŞ Çelik Mak. San. Tic. A. Ş.

3. MIDDLE EAST TECHNICAL UNIVERSITY

Abstract

In this study, mechanical properties of continuously cooled low carbon steels were predicted via Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) models. Unlike the previous studies, laboratory scaled self-generated data that consists of chemical compositions and cooling rates were used as input while yield strength (YS), ultimate tensile strength (UTS) and total elongation (TE) were served as target data. The prediction performances of the models were compared by applying new data set extracted from external sources like previously studied research papers, thesis or dissertations. A better agreement between predicted and actual data was achieved with ANN model. Additionally, the response of ANN model to new external data resulted in lower prediction errors even the data has one or more input value that is not included in the range of training data set. Unlike ANN model, MLR model shows a significant decrease in prediction accuracy when input data has non-uniform distribution or target data takes place in relatively narrow range. In general, it was shown that ANN model trained with self-generated data can be used as an efficient tool to estimate mechanical properties of continuously cooled low carbon steels that are produced with various conditions, even for the phenomena between input and output is complex and data distribution is non-uniform.

Funder

ÇEMTAŞ Çelik Mak. San. ve Tic. A. Ş., Bursa Technical University

Publisher

Journal of Innovative Engineering and Natural Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3