Treatment of Sewage Sludge Compost Leachates on a Green Waste Biopile: A Case Study for an On-Site Application

Author:

Ibrahim Irka Chaher,Prudent Pascale,Théraulaz Frédéric,Farnet Da Silva Anne-Marie,Asia Laurence,Gori Didier,Vassalo Laurent,Durand AmandineORCID,Demelas Carine,Höhener Patrick,Wong-Wah-Chung Pascal

Abstract

This work proposes a suitable treatment for the leachates from a sewage sludge composting process using a specific windrow (biopile). The biopile’s evolution and organic content degradation were followed for 2 months with regular leachate spraying to assess the physico-chemical and biological impacts, and determine the risk of enrichment with certain monitored pollutants. The final objective was the valorization of the biopile substrates in the composting process, while respecting the quality standards of use in a circular economy way. Classical physico-chemical parameters (pH, conductivity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), etc.) were measured in the leachates and in the water-extractable and dry-solid fractions of the biopile, and the catabolic evolution of the micro-organisms (diversity and activities), as well as the enrichment with persistent organic pollutants (POPs) (prioritized PAHs (polycyclic aromatic hydrocarbons) and PCBs (polychlorinated biphenyls)), were determined. The results showed that the microbial populations that were already present in the biopile, and that are responsible for biodegradation, were not affected by leachate spraying. Even when the studied compost leachate was highly concentrated with ammonium nitrogen (10.4 gN L−1 on average), it significantly decreased in the biopile after 2 weeks. A study on the evolution of the isotopic signature (δ15 N) confirmed the loss of leachate nitrogen in its ammoniacal form. The bio-physico-chemical characteristics of the biopile at the end of the experiment were similar to those before the first spraying with leachate. Moreover, no significant enrichment with contaminants (metal trace elements, volatile fatty acids, or persistent organic pollutants) was observed. The results show that it would be possible for composting platforms to implement this inexpensive and sustainable process for the treatment of leachates.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference50 articles.

1. EUR-Lex Official Journal of the European Union https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0098&from=EN

2. Circular economy design considerations for research and process development in the chemical sciences

3. Lancement de la Concertation sur le Plan National de Prévention des Déchets https://www.ecologie.gouv.fr/lancement-concertation-sur-plan-national-prevention-des-dechets

4. Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops

5. Bioremediation of diesel oil-contaminated soil by composting with biowaste

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3