Estimation of Travel Demand for Bangkok–Chiang Mai Hyperloop Using Traveler Surveys

Author:

Agrawal ParasORCID,Pravinvongvuth Surachet

Abstract

Hyperloop, projected as fast and efficient, and envisaged as the future of high-speed transportation, does not have much published information about its demand estimation. This paper aims to estimate the willingness of air and car passengers to shift to hyperloop. A nested logit model was used to analyze stated preference data gathered from the air and car travelers along the Bangkok–Chiang Mai sector in Thailand. The variables contributing the most to the modal shift towards hyperloop are total travel cost, total travel time, monthly income, gender, education level, bearer of trip expenses, and number of trips in the last 6 months and duration of stay at the destination. The highest value of elasticity for hyperloop is obtained for the total travel cost followed by total travel time and monthly income. It is concluded that hyperloop will be the predominant mode of transportation between the Bangkok–Chiang Mai sectors with a modal share of almost 50% by the year 2025. Survey results also revealed that the preferences of the passengers in order of priorities for long distance travel are comfort, low travel cost, less travel time, safety, high frequency of travel mode and low CO2 emission. The main contribution of this paper is to provide an insight on factors that may contribute towards a possible shift in mode from car and air to hyperloop. The study will be beneficial to policy makers in developing a strategy for a more efficient mass transportation system using new and emerging technologies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference57 articles.

1. Traffic Index Rankinghttps://www.tomtom.com/en_gb/traffic-index/ranking/

2. 2010 Population and Housing Censushttp://popcensus.nso.go.th/en/report.php

3. CO 2 Reduction Perspective in Thailand’s Transport sector towards 2030

4. Fossil CO2 & GHG Emissions of All World Countries;Janssens-Maenhout,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3