Investigating the Potential of Nighttime Light Data to Estimate Travel Demand

Author:

Sun Chao1234,Lu Jian123

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS Southeast University Nanjing China

2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies Southeast University Nanjing China

3. School of Transportation Southeast University Nanjing China

4. Urban and Data Science Lab Hiroshima University Hiroshima Japan

Abstract

ABSTRACTTaking the bike‐sharing travel demand (BSTD) as an example, this study investigates the potential of Nighttime Light (NTL) data to optimize forecasting performance and replace the land use factors. Stepwise regression is trained with the travel demand in each unit as the dependent variable, and land use factors are introduced as the independent variable one by one, which finds the set of independent variables. Five machine learning algorithms driven by ensemble learning and decision trees including the GBDT, Random Forecast, Adaboost, Extratrees, and Catboost, are employed and evaluated to achieve comparative analysis of “before considering‐after considering NTL data”. The methodological verification of Beijing city shows: (1) Adaboost and GBDT are superior to all other algorithms, since they generally have the highest R2, lowest RMSE, and lowest absolute MAPE. (2) All methods by employing NTL data obviously optimize the performance of BSTD forecast with decreased RMSE, decreased MAPE, etc. In particular, GBDT performs the best in reducing MSE, with a percentage of −99.99% in the training set and −86.985% in the test set, which AdaBoost, Extratrees, and Catboost follow. (3) Land use factors no longer make sense in predicting BSTD after employing NTL data, and NTL data has covered the roles of land use factors to ensure accuracy. The conclusions presented here enrich our understanding of the relative roles of land use factors and NTL data in travel demand and boost our optimization in traffic prediction in the future.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3