Freeze–Thaw Cycle Effects on the Energy Dissipation and Strength Characteristics of Alkali Metakaolin-Modified Cement Soil under Impact Loading

Author:

Huang Kun12,Wang Heng34ORCID,Huang Kai12

Affiliation:

1. Anhui Institute of Intelligent Underground Detection Technology, Anhui Jianzhu University, Hefei 230601, China

2. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

3. China Coal Research Institute, Beijing 100013, China

4. National Engineering Research Center of Deep Shaft Construction, Beijing 100013, China

Abstract

To investigate freeze–thaw cycle effects on the energy dissipation and strength characteristics of cement soils under impact loading, impact compression tests were carried out using a split Hopkinson pressure bar on cement soils under various freeze–thaw cycles (0, 1, 3, 6 and 10 times). The Zhu–Wang–Tang (ZWT) model was modified to predict the relationship between deformation and strength in cement soils under various test conditions. The obtained test results revealed that the freeze–thaw cycle number and impact pressure had significant effects on the fractal dimension, strength and absorbed energy of cement soils and there existed a critical freeze–thaw cycle number. It was found that the increase of the freeze–thaw cycle number gradually decreased strength and absorbed energy and increased the fractal dimension. When freeze–thaw cycle number was between 0–6, strength, fractal dimension and absorbed energy were significantly changed. For freeze–thaw cycle numbers greater than 6, the effects of the above factors were gradually alleviated. A modified constitutive model was able to accurately describe cement soil mechanical responses under high strain rate conditions, and the relative error between the predicted and experimental results was in the range of ±7%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3