Research on the Energy Dissipation Patterns and Fragment Size Distribution Characteristics of Coal Under Cyclic Impact Loading With Confining Pressure

Author:

Yongliang HeORCID,Yuping Fu,Chuantian Li,Liying Sun,Dongya Zhang

Abstract

This study examines energy dissipation patterns and failure mechanisms in coal under cyclic impact, crucial for preventing dynamic disasters like rock bursts and coal and gas outbursts. Using a 75‐mm split Hopkinson pressure bar (SHPB) experimental system, the dynamic mechanical characteristics and fragment size distribution patterns of coal samples were analysed under a confining pressure of 10 MPa, axial pressure of 12 MPa, and impact pressures of 0.25, 0.30, 0.35, 0.40, and 0.45 MPa for 1, 2, and 3 cycles. The experimental data indicate that as the number of impacts increases, the energy reflected by the coal samples gradually increases, while the transmitted energy correspondingly decreases. The energy absorbed per unit volume of the coal samples under the first, second, and third dynamic loading cycles and confining pressure is 0.56, 0.61, and 0.66 J/cm3, respectively, with energy absorption rates ranging from 16.2% to 33.8%. Under different impact pressures, the fractal dimension of coal fragmentation shows a linear change, and as the impact pressure increases, the degree of fragmentation intensifies, and the mass of the fragmented coal decreases. The strength reduction in the energy dissipation patterns of coal samples under dynamic loading provides important theoretical support for the prevention of rock bursts during coal mining.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3