Reconstruction of the Radar Reflectivity of Convective Storms Based on Deep Learning and Himawari-8 Observations

Author:

Duan Mingshan,Xia Jiangjiang,Yan ZhongweiORCID,Han LeiORCID,Zhang Lejian,Xia Hanmeng,Yu Shuang

Abstract

Radar reflectivity (RR) greater than 35 dBZ usually indicates the presence of severe convective weather, which affects a variety of human activities, including aviation. However, RR data are scarce, especially in regions with poor radar coverage or substantial terrain obstructions. Fortunately, the radiance data of space-based satellites with universal coverage can be converted into a proxy field of RR. In this study, a convolutional neural network-based data-driven model is developed to convert the radiance data (infrared bands 07, 09, 13, 16, and 16–13) of Himawari-8 into the radar combined reflectivity factor (CREF). A weighted loss function is designed to solve the data imbalance problem due to the sparse convective pixels in the sample. The developed model demonstrates an overall reconstruction capability and performs well in terms of classification scores with 35 dBZ as the threshold. A five-channel input is more efficient in reconstructing the CREF than the commonly used one-channel input. In a case study of a convective event over North China in the summer using the test dataset, U-Net reproduces the location, shape and strength of the convective storm well. The present RR reconstruction technology based on deep learning and Himawari-8 radiance data is shown to be an efficient tool for producing high-resolution RR products, which are especially needed for regions without or with poor radar coverage.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3