Diurnal Cycle Model of Lake Ice Surface Albedo: A Case Study of Wuliangsuhai Lake

Author:

Li Zhijun,Wang Qingkai,Tang Mingguang,Lu Peng,Li GuoyuORCID,Leppäranta MattiORCID,Huotari JussiORCID,Arvola Lauri,Shi Lijuan

Abstract

Ice surface albedo is an important factor in various optical remote sensing technologies used to determine the distribution of snow or melt water on the ice, and to judge the formation or melting of lake ice in winter, especially in cold and arid areas. In this study, field measurements were conducted at Wuliangsuhai Lake, a typical lake in the semi-arid cold area of China, to investigate the diurnal variation of the ice surface albedo. Observations showed that the diurnal variations of the ice surface albedo exhibit bimodal characteristics with peaks occurring after sunrise and before sunset. The curve of ice surface albedo with time is affected by weather conditions. The first peak occurs later on cloudy days compared with sunny days, whereas the second peak appears earlier on cloudy days. Four probability density distribution functions—Laplace, Gauss, Gumbel, and Cauchy—were combined linearly to model the daily variation of the lake ice albedo on a sunny day. The simulations of diurnal variation in the albedo during the period from sunrise to sunset with a solar altitude angle higher than 5° indicate that the Laplace combination is the optimal statistical model. The Laplace combination can not only describe the bimodal characteristic of the diurnal albedo cycle when the solar altitude angle is higher than 5°, but also reflect the U-shaped distribution of the diurnal albedo as the solar altitude angle exceeds 15°. The scale of the model is about half the length of the day, and the position of the two peaks is closely related to the moment of sunrise, which reflects the asymmetry of the two peaks of the ice surface albedo. This study provides a basis for the development of parameterization schemes of diurnal variation of lake ice albedo in semi-arid cold regions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Open Fund of State Key Laboratory of Frozen Soil Engineering

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3