Affiliation:
1. a College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
2. b Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, China
Abstract
Abstract
Chlorophyll-a (Chl-a) is an important parameter in water bodies. Due to the complexity of optics in water bodies, it is difficult to accurately predict Chl-a concentrations in water bodies by current traditional methods. In this paper, using Sentinel-2 remote sensing images as the data source combined with measured data, taking Wuliangsu Lake as the study area, a new intelligent algorithm is proposed for prediction of Chl-a concentration, which uses the adaptive ant colony exhaustive optimization algorithm (A-ACEO) for feature selection and the gray wolf optimization algorithm (GWO) to optimize support vector regression (SVR) to achieve Chl-a concentration prediction. The ant colony optimization algorithm is improved to select remote sensing feature bands for Chl-a concentration by introducing relevant optimization strategies. The GWO-SVR model is built by optimizing SVR using GWO with the selected feature bands as input and comparing it with the traditional SVR model. The results show that the usage of feature bands selected by the presented A-ACEO algorithm as inputs can effectively reduce complexity and improve the prediction performance of the model, under the condition of the same model, which can provide valuable references for monitoring the Chl-a concentration in Wuliangsu Lake.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Key Technologies Research and Development Program
Natural Science Foundation of Inner Mongolia
Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region
the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region
Subject
Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献