Di (Isoquinolin-1-Yl) Sulfane (DIQS) Inhibits Melaninogenesis by Modulating PKA/CREB and MAPK Signaling Pathways

Author:

Yang Jung Yoon,Shin Dae-SeopORCID,Hwang Kyu-SeokORCID,Kim Seong SoonORCID,Lee Byung Hoi,Ahn Se Hwan,Ahn Jin HeeORCID,Bae Myung Ae

Abstract

The novel synthetic compound Di (isoquinolin-1-yl) sulfane (DIQS) was identified by zebrafish larva screening during the development of an agent to inhibit abnormal hyperpigmentation. In this study, we investigated the inhibitory effect of DIQS on melanogenesis and its underlying mechanism. DIQS inhibited melanin production and tyrosinase activity in B16F10 cells stimulated with α-melanocyte-stimulating hormone (α-MSH), as well as zebrafish embryos and reconstituted human skin tissue containing melanocytes. DIQS decreased the mRNA and protein expression of microphthalmia-associated transcription factor (MITF) and tyrosinase at a concentration of 10 μM. DIQS also inhibited the phosphorylation of cAMP response element-binding protein (CREB) and p-p38 and p-JNK stimulated by α-MSH. These results suggest that DIQS attenuates hyperpigmentation via inhibition of the cAMP/PKA/CREB/MITF/tyrosinase axis and MAPK pathways. Liquid chromatography–tandem mass spectrometry analysis revealed that DIQS blocked the conversion of tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) in zebrafish embryos. Finally, we confirmed that DIQS was non-toxic in reconstituted human tissues such as the epidermis, used to test skin sensitization, and the cornea, used to test eye irritation. In summary, the results of this study suggest the potential of DIQS as a small-molecule agent for skin-whitening cosmetics and the treatment of hyperpigmentation disorders without biological toxicity.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3