Microencapsulation as a Route for Obtaining Encapsulated Flavors and Fragrances

Author:

Kłosowska Agnieszka12,Wawrzyńczak Agata1ORCID,Feliczak-Guzik Agnieszka1ORCID

Affiliation:

1. Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

2. Allsenses Poland, Święty Marcin 29/8, 61-806 Poznań, Poland

Abstract

Microencapsulation methods for active substances, such as fragrance compounds and aromas, have long been of interest to researchers. Fragrance compositions and aromas are added to cosmetics, household, and food products. This is often because the choice of a particular product is dictated by its fragrance. Fragrance compositions and aromas are, therefore, a very important part of the composition of these items. During production, when a fragrance composition or aroma is introduced into a system, unfavorable conditions often exist. High temperatures and strong mixing have a detrimental effect on some fragrance compounds. The environments of selected products, such as high- or low-pH surfactants, all affect the fragrance, often destructively. The simple storage of fragrances where they are exposed to light, oxygen, or heat also has an adverse effect. The solution to most of these problems may be the encapsulation process, namely surrounding small fragrance droplets with an inert coating that protects them from the external environment, whether during storage, transport or application, until they are in the right conditions to release the fragrance. The aim of this article was to present the possible, available and most commonly used methods for obtaining encapsulated fragrances and aromas, which can then be used in various industries. In addition, the advantages and disadvantages of each method were pointed out, so that the selection of the appropriate technology for the production of encapsulated fragrances and aromas will be simpler.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3