An Ensemble Extreme Learning Machine for Data Stream Classification

Author:

Yang Rui,Xu Shuliang,Feng Lin

Abstract

Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN). Because ELM has a fast speed for classification, it is widely applied in data stream classification tasks. In this paper, a new ensemble extreme learning machine is presented. Different from traditional ELM methods, a concept drift detection method is embedded; it uses online sequence learning strategy to handle gradual concept drift and uses updating classifier to deal with abrupt concept drift, so both gradual concept drift and abrupt concept drift can be detected in this paper. The experimental results showed the new ELM algorithm not only can improve the accuracy of classification result, but also can adapt to new concept in a short time.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CDA-PDDWE: Concept Drift-Aware Performance-Based Diversified Dynamic Weighted Ensemble for Non-stationary Environments;Arabian Journal for Science and Engineering;2024-03-29

2. Text Stream Classification: Literature Review and Current Trends;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

3. Enhancing Drift Detection and Model Uncertainty Handling in Imbalanced Streaming Data using Autoencoder-based Approach;2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon);2023-08-18

4. Forgetful Forests: Data Structures for Machine Learning on Streaming Data under Concept Drift;Algorithms;2023-05-31

5. Data Stream Classification Based on Extreme Learning Machine: A Review;Big Data Research;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3