Forgetful Forests: Data Structures for Machine Learning on Streaming Data under Concept Drift

Author:

Yuan Zhehu1ORCID,Sun Yinqi1ORCID,Shasha Dennis1

Affiliation:

1. Courant Institute of Mathematical Science, New York University, New York, NY 10012, USA

Abstract

Database and data structure research can improve machine learning performance in many ways. One way is to design better algorithms on data structures. This paper combines the use of incremental computation as well as sequential and probabilistic filtering to enable “forgetful” tree-based learning algorithms to cope with streaming data that suffers from concept drift. (Concept drift occurs when the functional mapping from input to classification changes over time). The forgetful algorithms described in this paper achieve high performance while maintaining high quality predictions on streaming data. Specifically, the algorithms are up to 24 times faster than state-of-the-art incremental algorithms with, at most, a 2% loss of accuracy, or are at least twice faster without any loss of accuracy. This makes such structures suitable for high volume streaming applications.

Funder

U.S. National Science Foundation

U.S. National Institutes of Health

NYU Wireless

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference23 articles.

1. Pandey, R., Singh, N.K., Khatri, S.K., and Verma, P. (2022). Artificial Intelligence and Machine Learning for EDGE Computing, Elsevier Inc.

2. Saco, A., Sundari, P.S., J, K., and Paul, A. (2022). An Optimized Data Analysis on a Real-Time Application of PEM Fuel Cell Design by Using Machine Learning Algorithms. Algorithms, 15.

3. Deep learning;LeCun;Nature,2015

4. Stuart Russell, and Peter Norvig (2020). Artificial Intelligence: A Modern Approach, Prentice Hall. [4th ed.].

5. Learn++: An incremental learning algorithm for supervised neural networks;Polikar;IEEE Trans. Syst.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3