Experimental and Numerical Analysis of Forced Convection in a Horizontal Tube Partially Filled with a Porous Medium under Local Thermal Equilibrium Conditions

Author:

Amoli Behzad Siavash,Ajarostaghi Seyed Soheil MousaviORCID,Saffar-Avval Majid,Abardeh Reza Hosseini,Akkurt Nevzat

Abstract

The objective of the present work is to analyze experimentally and numerically the laminar forced convection flow in a horizontal pipe partially filled with a porous medium under constant heat flux and to study the influence of the eccentricity of the porous medium on the results. In a numerical analysis, the governing equations are solved in three dimensions. To simplify the grid generation and the satisfaction of the boundary conditions, conformal mapping is applied to convert the cross-section of the tube in the fluid domain (space between two eccentric circles) into a rectangle, and the equations are solved in a computational domain in this domain. The Darcy–Brinkman–Forchheimer model is applied to simulate the hydrodynamic behavior of the flow in the porous region. Thermal equilibrium between solid and fluid is assumed for the energy equation. A FORTRAN program was developed to solve the equations using the finite volume method and the SIMPLE algorithm. Velocity profile, pressure drop and average Nusselt number are studied in a wide range of Darcy numbers, thickness of porous mediums and eccentricities. The results show that the eccentricity of the porous material reduces the heat transfer coefficient and the pressure drop simultaneously; of course, the reduction in the heat transfer coefficient is less noticeable when the thickness of the porous medium is smaller. For example, at RP = 0.5, when the eccentricity of the porous medium increases up to E = 0.4, the average Nusselt number decreases by 66%, and this reduction for a smaller porous thickness decreases to 11%. The maximum pressure drop reduction for Da = 10−5 and E = 0.4 is 25%.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3