Nitrogen and Sulfur Co-Doped Graphene as Efficient Electrode Material for L-Cysteine Detection

Author:

Varodi Codruța,Pogăcean Florina,Cioriță AlexandraORCID,Pană Ovidiu,Leoștean Cristian,Cozar Bogdan,Radu Teodora,Coroș Maria,Ștefan-van Staden Raluca IoanaORCID,Pruneanu Stela-MariaORCID

Abstract

Two graphene samples co-doped with nitrogen and sulfur were synthesized by the hydrothermal method using thiourea as doping and reducing agent for graphene oxide (GO). An appropriate amount of thiourea was added to the aqueous dispersion of GO, previously sonicated for 30 min. The mixture was poured into an autoclave and placed in the oven for 3 h, at 120 and 200 °C. The samples were denoted NSGr-120 and NSGr-200, respectively, in agreement with the reaction temperatures. They were next morphologically and structurally characterized by advanced techniques, such as SEM/TEM, XPS, XRD, and FTIR. According to XPS analysis, the NSGr-120 sample has higher amounts of heteroatoms in comparison with NSGr-200, indicating that the reaction temperature is a crucial factor that affects the doping degree. In order to reveal the influence of the doping degree on the electrochemical performances of graphene-modified electrodes, they were tested in solutions containing L-cysteine molecules. The electrode with the best electrocatalytic performances, GC/NSGr-120, was tested to detect L-cysteine in a pharmaceutical drug, proving its applicability in real sample analysis.

Funder

Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, Romania

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3