Abstract
Nanocomposite thin films, sensitive to methane at the room temperature (25–30 °C), have been prepared, starting from SnSe2 powder and Zn(II)-5,10,15,20-tetrakis-(4-aminophenyl)- -porphyrin (ZnTAPP) powder, that were fully characterized by XRD, UV-VIS, FT-IR, Nuclear Magnetic Resonance (1H-NMR and 13C-NMR), Atomic Force Microscopy (AFM), SEM and Electron Paramagnetic Resonance (EPR) techniques. Film deposition was made by drop casting from a suitable solvent for the two starting materials, after mixing them in an ultrasonic bath. The thickness of these films were estimated from SEM images, and found to be around 1.3 μm. These thin films proved to be sensitive to a threshold methane (CH4) concentration as low as 1000 ppm, at a room temperature of about 25 °C, without the need for heating the sensing element. The nanocomposite material has a prompt and reproducible response to methane in the case of air, with 50% relative humidity (RH) as well. A comparison of the methane sensing performances of our new nanocomposite film with that of other recently reported methane sensitive materials is provided. It is suitable for signaling gas presence before reaching the critical lower explosion limit concentration of methane at 50,000 ppm.
Funder
Ministerul Cercetării şi Inovării
Academia Româna
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献