Synthesis and Characterization of a Multiporous SnO2 Nanofibers-Supported Au Nanoparticles-Based Amperometric Sensor for the Nonenzymatic Detection of H2O2

Author:

Kader Md. Ashraful1ORCID,Azmi Nina Suhaity1,Kafi A. K. M.2,Hossain Md. Sanower3ORCID,Masri Mohd Faizulnazrie Bin1,Ramli Aizi Nor Mazila1,Tan Ching Siang4ORCID

Affiliation:

1. Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia

2. Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA

3. Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia

4. School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia

Abstract

The challenges of a heme protein and enzyme-based H2O2 sensor was subdued by developing a highly sensitive and practically functional amperometric gold nanoparticles (Au NPs)/SnO2 nanofibers (SnO2 NFs) composite sensor. The composite was prepared by mixing multiporous SnO2 NFs (diameter: 120–190 nm) with Au NPs (size: 3–5 nm). The synthesized Au NPs/SnO2 NFs composite was subsequently coated on a glassy carbon electrode (GCE) and displayed a well-defined reduction peak during a cyclic voltammetry (CV) analysis. The SnO2 NFs prevented the aggregation of Au NPs through its multiporous structure and enhanced the catalytic response by 1.6-fold. The SnO2 NFs-supported GCE/Au NPs/SnO2 NFs composite sensor demonstrated a very good catalytic activity during the reduction of hydrogen peroxide (H2O2) that displayed rapid amperometric behavior within 6.5 s. This sensor allowed for highly sensitive and selective detection. The sensitivity was 14.157 µA/mM, the linear detection range was from 49.98 µM to 3937.21 µM (R2 = 0.99577), and the lower limit of detection was 6.67 µM. Furthermore, the developed sensor exhibited acceptable reproducibility, repeatability, and stability over 41 days. In addition, the Au NPs/SnO2 NFs composite sensor was tested for its ability to detect H2O2 in tap water, apple juice, Lactobacillus plantarum, Bacillus subtilis, and Escherichia coli. Therefore, this sensor would be useful due to its accuracy and sensitivity in detecting contaminants (H2O2) in commercial products.

Funder

Ministry of Higher Education

Universiti Malaysia Pahang

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3