A Non-Disposable Electrochemical Sensor Based on Laser-Synthesized Pd/LIG Nanocomposite-Modified Screen-Printed Electrodes for the Detection of H2O2

Author:

Song Ruijie1ORCID,Zhang Jianwei2ORCID,Yang Ge1,Wu Yu1,Yu Jun1,Zhu Huichao2

Affiliation:

1. Department of the School of Medicine, Dalian University of Technology, Dalian 116024, China

2. Department of the School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

There have been many studies on the significant correlation between the hydrogen peroxide content of different tissues or cells in the human body and the risk of disease, so the preparation of biosensors for detecting hydrogen peroxide concentration has been a hot topic for researchers. In this paper, palladium nanoparticles (PdNPs) and laser-induced graphene (LIG) were prepared by liquid-phase pulsed laser ablation and laser-induced technology, respectively. The complexes were prepared by stirring and used for the modification of screen-printed electrodes to develop a non-enzymatic hydrogen peroxide biosensor that is low cost and mass preparable. The PdNPs prepared with anhydrous ethanol as a solvent have a uniform particle size distribution. The LIG prepared by laser direct writing has good electrical conductivity, and its loose porous structure provides more adsorption sites. The electrochemical properties of the modified electrode were characterized by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Compared with bare screen-printed electrodes, the modified electrodes are more sensitive for the detection of hydrogen peroxide. The sensor has a linear response range of 5 µM–0.9 mM and 0.9 mM–5 mM. The limit of detection is 0.37 µM. The above conclusions indicate that the hydrogen peroxide electrochemical biosensor prepared in this paper has great advantages and potential in electrochemical catalysis.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3