Prediction of Diamene-Based Chemosensors

Author:

Boukhvalov Danil W.ORCID,Osipov Vladimir Yu.

Abstract

This paper presents the results of systematic studies of the atomic structure of the layered bulk, bilayer, and monolayer of diamene (a two-dimensional diamond monolayer recently synthesized by various methods) functionalized with fluorine and hydroxyl groups with the chemical formulas C2F and C2OH. The results of our calculations show that both types of diamene under discussion have a wide optical gap corresponding to the absorption of light in the UV spectral range. The formation of a boundary between these two types of diamene layers leads to a significant decrease in the band gap. Therefore, this layered material, with an interface between fluorinated and hydroxylated diamenes (C2F/C2OH structures), can be considered a suitable material for converting UV radiation into visible light in the orange-yellow part of the spectrum. The adsorption of acetone or water on the C2F/C2OH structures results in visible changes in the band gap. The effect on photoemission is different for different detected analytes. The presence of formaldehyde in water ensures the appearance of distinct peaks in the absorption spectra of structures based on C2F/C2OH. Our simulation results suggest that the simulated C2F/C2OH structures can be used as chemically stable, lightweight materials composed of common elements for a highly selective chemical sensor in liquid and air.

Funder

Russian Science Foundation

Ioffe Institute

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3