Affiliation:
1. China‐Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 China
2. Institute of Photonic Chips University of Shanghai for Science and Technology Shanghai 200093 China
3. College of Science Nanjing Forestry University Nanjing 210037 China
4. Institute of Physics and Technology Ural Federal University Mira Str. 19 Yekaterinburg 620002 Russia
5. Research School of Chemistry Australian National University Canberra ACT 2601 Australia
Abstract
AbstractNonlinear optical materials hold great promise for applications in advanced opto‐/opto‐electronic devices. However, achieving a substantial nonlinear absorption coefficient and modulation depth concurrently remains challenging. This study proposes an effective strategy for enhancing the nonlinear optical response of materials through the construction of hybrid inorganic–organic superlattices via convenient organic intercalation. Synthesizing SnS2 intercalated with various tetra‐alkylammonium cations, it is revealed that the optimized sample (SnS2/CTA: SnS2 intercalated with cetyltrimethylammonium, CTA+) exhibits a substantial enhancement of nonlinear absorption across a broad wavelength range (from 515 to 1550 nm) and for diverse nonlinear optical processes (saturable absorption, two‐photon absorption, and three‐photon absorption). Specifically, the SnS2/CTA demonstrates a third‐order nonlinear absorption coefficient of (9.847 ± 0.084) × 103 cm GW−1 and a 69% modulation depth under laser excitation at 800 nm. Under 1550 nm excitation, it displays a fifth‐order nonlinear absorption coefficient of (45.3 ± 1.2) cm3 GW−2 and a 62% modulation depth. Notably, these values surpass those of the majority of non‐exfoliated materials. Structural, spectral, and density functional theory calculations indicate no induced structure defects post‐organic intercalation. The observed bandgap reduction is attributed to the electron injection associated with the organic molecule intercalation. The calculated performance enhancement, based on dielectric enhancement and bandgap reduction, qualitatively aligns with experimental findings.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Fundamental Research Funds for the Central Universities
Ministry of Education
State Administration of Foreign Experts Affairs
Higher Education Discipline Innovation Project
Australian Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献