Abstract
A major problem associated with the development of medicinal plant products is the lack of quick, easy, and inexpensive methods to assess and monitor product quality. Essential oils are natural plant-derived volatile substances used worldwide for numerous applications. The important uses of these valuable products often induce producers to create fraudulent or lower quality products. As a result, consumers place a high value on authentic and certified products. Mint is valued for essential oil used in the food, pharmaceutical, cosmetic, and health industries. This study investigated the use of an experimental electronic nose (e-nose) for the detection of steam-distilled essential oils. The e-nose was used to evaluate and analyze VOC emissions from essential oil (EO) and distilled water extracts (DWEs) obtained from mint plants of different ages and for leaves dried in the shade or in the sun prior to hydrodistillation. Principal component analysis (PCA), linear discriminant analysis (LDA), and artificial neural networks (ANN) were performed on electrical signals generated from electronic nose sensors for the classification of VOC emissions. More accurate discriminations were obtained for DWEs sample VOCs than for EO VOCs. The electronic nose proved to be a reliable and fast tool for identifying plant EO. The age of plants had no statistically significant effect on the EO concentration extracted from mint leaves.
Subject
Physical and Theoretical Chemistry,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献