Miniaturized NIR Spectrometers in a Nutshell: Shining Light over Sources of Variance

Author:

Gorla Giulia1ORCID,Taborelli Paolo1,Ahmed Hawbeer Jamal2ORCID,Alamprese Cristina3ORCID,Grassi Silvia3ORCID,Boqué Ricard2ORCID,Riu Jordi2ORCID,Giussani Barbara1ORCID

Affiliation:

1. Department of Science and High Technology, University of Insubria, Via Valleggio 9, 22100 Como, Italy

2. Chemometrics, Qualimetrics and Nanosensors Group, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Spain

3. Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Giovanni Celoria 2, 20133 Milan, Italy

Abstract

The increasing portability and accessibility of miniaturized NIR spectrometers are promoting the spread of in-field and online applications. Alongside the successful outcomes, there are also several problems related to the acquisition strategies for each instrument and to experimental factors that can influence the collected signals. An insightful investigation of such factors is necessary and could lead to advancements in experimental set-up and data modelling. This work aimed to identify variation sources when using miniaturized NIR sensors and to propose a methodology to investigate such sources based on a multivariate method (ANOVA—Simultaneous Component Analysis) that considers the effects and interactions between them. Five different spectrometers were chosen for their different spectroscopic range and technical characteristics, and samples of worldwide interest were chosen as the case study. Comparing various portable sensors is interesting since results could significantly vary in the same application, justifying the idea that this kind of spectrometer is not to be treated as a general class of instruments.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3