A Simple Method to Fabricate the Highly Sensitive SERS Substrate by Femtosecond Laser-Based 3D Printer

Author:

Kim Woong12,Kim Woochang1,Bang Doyeon34ORCID,Park Jinsung1ORCID,Lee Wonseok5

Affiliation:

1. Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana and Champaign, Urbana, IL 61801, USA

3. College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea

4. Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea

5. Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a potent technique for analyzing and detecting various targets, including toxic ions, pesticides, and biomarkers, at the single-molecule level. The efficiency of SERS techniques relies heavily on the underlying SERS substrate, which is primarily responsible for the strong induction of localized plasmon resonance on nanostructures. Noble metals such as gold and silver were commonly used to fabricate SERS substrates, leveraging the electromagnetic mechanism (EM) to enhance the Raman signal. However, chemically synthesized nanoparticle-based SERS substrates suffer from low uniformity and reproducibility. Furthermore, the high cost associated with noble metals makes most SERS substrates expensive to produce. In this study, we present a straightforward method for fabricating a highly uniform and reproducible SERS substrate using a femtosecond laser-based 3D printer. Notably, our method offers good cost competitiveness since it requires only a minimal amount of gold coating for the SERS signal. Moreover, the proposed method exhibits exceptional versatility in SERS analysis and detection, catering to numerous targets in the field.

Funder

National Research Foundation of Korea

Korea Environment Industry & Technology Institute

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3