Laser-Induced Graphene on Optical Fibre: Towards Simple and Cost-Effective Electrochemical/Optical Lab-on-Fibre Bioplatforms

Author:

Ferreira Laura L.1,Ribeiro Rafael A.1,Fernandes António J. S.1ORCID,Costa Florinda M.1ORCID,Marques Carlos1ORCID,Santos Nuno F.1ORCID

Affiliation:

1. i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

A 3D graphene foam made of interconnected multilayer graphene flakes was produced on optical fibres (OF) by laser-induced transformation of a polyimide (PI) film coated on the OF cladding. This material, known as laser-induced graphene (LIG), was explored in the electrochemical detection and quantification of dopamine (DA) at physiologically relevant concentrations in the presence of the most relevant interfering molecules in biological fluids, ascorbic acid (AA) and uric acid (UA). The measured limit of detection is 100 nM, the linear range is 0.1 to 5.0 μM and a maximum sensitivity of 5.0 µA µM−1 cm−2 was obtained for LIG decorated with Pt nanoparticles (NPs). Moreover, immunity to AA and UA interference and to fouling was attained by decorating the LIG electrode with Pt NPs and coating it with Nafion. These figures of merit underline the potential of these sensors for the quantification of physiologically relevant concentrations of DA in biological fluids, paving the way for the development of hybrid electrochemical/optical sensing actuating platforms in a lab-on-fibre configuration, with relevant applications in biomedical engineering. The advantages of this hybrid arrangement include the possibility of in situ counterproofing, extended measuring ranges, photoelectrochemical detection and the probing of inaccessible places. This elegant approach can also provide a simple and cost-effective way to fabricate biomedical devices with extended functionality, such as medical optical probes with added electrochemical capabilities and optogenetics combined with local electrochemical detection, among others.

Funder

projects i3N

DigiAqua

Portuguese Science and Technology Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3