Adsorption Kinetics of NO2 Gas on Pt/Cr-TiO2/Pt-Based Sensors

Author:

Haidry Azhar AliORCID,Fatima Qawareer,Mehmood Ahmar,Shahzad AsimORCID,Ji Yinwen,Saruhan BilgeORCID

Abstract

Metal oxides are excellent candidates for the detection of various gases; however, the issues such as the limited operating temperature and selectivity are the most important ones requiring the comprehensive understanding of gas adsorption kinetics on the sensing layer surfaces. To this context, the present study focuses mainly on the fabrication of a Pt/Cr-TiO2/Pt type sensor structure that is highly suitable in reducing the operating temperature (from 400 to 200 °C), extending the lower limit NO2 gas concentration (below 10 ppm) with fast response (37 s) and recovery (24 s) times. This illustrates that the sensor performance is not only solely dependent on the nature of sensing material, but also, it is significantly enhanced by using such a new kind of electrode geometry. Moreover, Cr doping into TiO2 culminates in altering the sensor response from n- to p-type and thus contributes to sensor performance enhancement by detecting low NO2 concentrations selectively at reduced operating temperatures. In addition, the NO2 surface adsorption kinetics are studied by fitting the obtained sensor response curves with Elovich, inter-particle diffusion, and pseudo first-order and pseudo second-order adsorption models. It is found that a pseudo first-order reaction model describes the best NO2 adsorption kinetics toward 7–170 ppm NO2 gas at 200 °C. Finally, the sensing mechanism is discussed on the basis of the obtained results.

Funder

National Natural Science Foundation of China

Central University Basic Scientific Research Business Expenses Special Funds

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3