Development of composite optical waveguide based on azobenzene-modified titanium metal-organic framework film for study of gas adsorption kinetics

Author:

Nizamidin Patima1ORCID,Guo Caiping1,Du Xiangdi1,Yang Qin1,Chen Huifang1,Yimit Abliz1

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University , Urumqi 830017, People’s Republic of China

Abstract

This study investigates the fabrication and gas adsorption kinetics of an azobenzene (AZB)-modified titanium metal-organic framework (AZB@Ti-MOF) film composite optical waveguide (COWG) that recognizes ethylenediamine (EDA) gas. After modification with AZB, the surface of the Ti-MOF film became rough and evolved from a hemispherical structure to a petal-like structure; a large pore size and small specific surface area accompanied the evolution of the surface morphology. The AZB@Ti-MOF film COWG exhibited a positive response to EDA gas co-existing with the same concentration (1000 ppm) of benzenes, amines, and acidic gases. It is postulated that charge transfer occurs when the AZB@Ti-MOF film COWG adsorbs EDA gas, leading to significant strengthening of the intramolecular hydrogen bonds as EDA works as an electron donor. Incomplete or prolonged EDA desorption from the film surface at room temperature resulted in a decrease in the surface sensitivity of the COWG AZB@Ti-MOF film. The kinetics of EDA adsorption were examined using pseudo-first-order and pseudo-second-order (PSO) kinetic models. The EDA adsorption kinetics fit well with the PSO model. As measured at room temperature, the adsorption capacity (qe) per unit surface of the AZB@Ti-MOF films was 46.50 × 10−2 µg·cm−2.

Funder

National Natural Science Foundation of China-Xinjiang Joint Fund

Natural Science Fundation of Xinjiang Uyghur Autonomous Region

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3