Adsorption Characteristics of Carbon Monoxide on Ag- and Au-Doped HfS2 Monolayers Based on Density Functional Theory

Author:

Qian Guochao,Dai Weiju,Zhou Fangrong,Ma Hongming,Wang Shan,Hu Jin,Zhou QuORCID

Abstract

A large amount of power equipment works in closed or semi-closed environments for a long time. Carbon monoxide (CO) is the most prevalent discharge gas following a fault in the components. Based on the density functional theory of first principles, the adsorption behavior of CO gas molecules on intrinsic, Ag-doped and Au-doped hafnium disulfide (HfS2) monolayers was systematically studied at the atomic scale. Firstly, the intrinsic HfS2 monolayer, Ag-doped HfS2 (Ag-HfS2) monolayer and Au-doped HfS2 (Au-HfS2) monolayer, with different doping sites, were created. The structural stability, dopant charge transfer, substrate conductivity and energy band structure of different doping sites of the Ag-HfS2 and Au-HfS2 monolayer structures were calculated. The most stable doping structure was selected with which to obtain the best performance on the subsequent gas adsorption test. Then, the CO adsorption models of intrinsic HfS2, Ag-HfS2 and Au-HfS2 were constructed and geometrically optimized. The results show that the adsorption energy of the Ag-HfS2 monolayer for CO gas is −0.815 eV, which has good detection sensitivity and adsorption performance. The adsorption energy of CO on the Au-HfS2 monolayer is 2.142 eV, the adsorption cannot react spontaneously, and the detection sensitivity is low. The research content of this paper provides a theoretical basis for the design and research of gas sensing materials based on HfS2, promoting the development and application of HfS2 in gas sensing and other fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3