Adsorption Mechanism of SO2 on Transition Metal (Pd, Pt, Au, Fe, Co and Mo)-Modified InP3 Monolayer

Author:

Hou Tianyu,Zeng Wen,Zhou QuORCID

Abstract

Using the first-principles theory, this study explored the electronic behavior and adsorption effect of SO2 on an InP3 monolayer doped with transition metal atoms (Pd, Pt, Au, Fe, Co and Mo). Through calculation and analysis, the optimum doping sites of TM dopants on the InP3 monolayer were determined, and the adsorption processes of SO2 by TM-InP3 monolayers were simulated. In the adsorption process, all TM-InP3 monolayers and SO2 molecules were deformed to some extent. All adsorption was characterized as chemical adsorption, and SO2 acted as an electron acceptor. Comparing Ead and Qt, the order of the SO2 adsorption effect was Mo-InP3 > Fe-InP3 > Co-InP3 > Pt-InP3 > Pd-InP3 > Au-InP3. Except for the Au atom, the other five TM atoms as dopants all enhanced the adsorption effect of InP3 monolayers for SO2. Furthermore, the analysis of DCD and DOS further confirmed the above conclusions. Based on frontier orbital theory analysis, it is revealed that the adsorption of SO2 reduces the conductivity of TM-InP3 monolayers to different degrees, and it is concluded that Pd-InP3, Pt-InP3, Fe-InP3 and Mo-InP3 monolayers have great potential in the application of SO2 resistive gas sensors. This study provides a theoretical basis for further research on TM-InP3 as a SO2 sensor.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3