Room-Temperature NO2 Gas Sensors Based on Granulated Carbon Nanofiber Material

Author:

Bannov Alexander G.ORCID,Lapekin Nikita I.ORCID,Kurmashov Pavel B.,Ukhina Arina V.,Manakhov AntonORCID

Abstract

Room-temperature gas sensors based on granulated carbon nanofiber material were investigated for the detection of NO2. The granulated material consisting of intertwined carbon nanofibers was synthesized by the decomposition of CH4 over the Ni/Al2O3 catalyst in a vibro-fluidized bed reactor. Carbon material was investigated using transmission electron microscopy, Raman spectroscopy, low-temperature nitrogen adsorption, and X-ray photoelectron spectroscopy. Investigation of the gas sensors towards NO2 at room temperature (25 ± 2 °C) was carried out in a dynamic flow-through setup in the range from 1 to 500 ppm. A comparison of the sensitivity gas sensor to NH3 and CH4 was also given. The sensor based on non-treated carbon nanofiber material showed the response ΔR/R0 of 5.1 % to 10 ppm of NO2. It was found that the sensor response to NO2 decreased when increasing the relative humidity. The effect of the relative humidity was more pronounced for low concentrations of nitrogen dioxide and decreases with a further increase in them.

Funder

NSTU Development program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3