Solution Combustion Synthesis of Ni/Al2O3 Catalyst for Methane Decomposition: Effect of Fuel

Author:

Kurmashov Pavel B.1,Ukhina Arina V.2,Manakhov Anton3ORCID,Ishchenko Arkady V.4ORCID,Maksimovskii Evgenii A.5,Bannov Alexander G.1

Affiliation:

1. Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia

2. Institute of Chemistry of Solid State and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630092 Novosibirsk, Russia

3. Research Laboratory of Inorganic Nanomaterials, National University of Science and Technology (MISIS), Leniskiy Prospect, 4, 119049 Moscow, Russia

4. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia

5. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

The synthesis of a 90% Ni/Al2O3 catalyst via solution combustion synthesis with various fuels was studied in this work. Catalysts with a high content of the active component (i.e., nickel) were obtained as a result of the combustion of Ni(NO3)2·6H2O and Al(NO3)3·9H2O mixtures with fuel. The fuels, such as hexamethylenetetramine, glycine, urea, starch, citric acid, and oxalic acid, were investigated. The synthesis was carried out in a furnace, with the temperature being raised from room temperature to 450 °C at a rate of 1 °C per min. The paper evaluates the efficiency of fuels and their effect on the structure and properties of catalysts, as well as their catalytic activity. The catalyst was used for the synthesis of hydrogen and carbon nanofibers by methane decomposition at 1 bar and 550 °C. The catalysts were tested in a vertical flow reactor without preliminary reduction. The obtained samples of catalysts and carbon nanomaterials were studied by transmission electron microscopy, low-temperature nitrogen adsorption, and X-ray diffraction. The highest activity of the catalyst was obtained when citric acid was used as a fuel. The specific yields of hydrogen and carbon nanofibers were 17.1 mol/gcat and 171.3 g/gcat, respectively. Catalytic decomposition of methane led to the formation of cup-stacked carbon nanofibers.

Funder

State Task of Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3