Highly Sensitive Ethanol Sensing Using NiO Hollow Spheres Synthesized via Hydrothermal Method

Author:

Li Qingting,Zeng WenORCID,Zhou QuORCID,Wang ZhongchangORCID

Abstract

Excessive ethanol gas is a huge safety hazard, and people will experience extreme discomfort after inhalation, so efficient ethanol sensors are of great importance. This article reports on ethanol gas sensors that use NiO hollow spheres assembled from nanoparticles, nanoneedles, and nanosheets prepared by the hydrothermal method. All of the samples were characterized for performance evaluation. The sensors based on the NiO hollow spheres showed a good response to ethanol, and the hollow spheres assembled from nanosheets (NiO-S) obtained the best ethanol gas-sensing performance. NiO-S provided a larger response value (38.4) at 350 °C to 200 ppm ethanol, and it had good stability and reproducibility. The nanosheet structure and the fluffy surface of NiO-S obtained the largest specific surface area (55.20 m2/g), and this structure was beneficial for the sensor to adsorb more gas molecules in an ethanol atmosphere. In addition, the excellent sensing performance could ascribe to the larger Ni3+/Ni2+ of NiO-S, which achieved better electronic properties. Furthermore, in terms of commercial production, the template-free preparation of NiO-S eliminated one step, saving time and cost. Therefore, the sensors based on NiO-S will serve as candidates for ethanol sensing.

Funder

Graduate Research and Innovation Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3