The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors

Author:

Majder-Łopatka Małgorzata,Węsierski Tomasz,Dmochowska AnnaORCID,Salamonowicz Zdzisław,Polańczyk AndrzejORCID

Abstract

This article examines electrochemical carbon monoxide (CO) sensors used as mobile devices by rescue and firefighting units in Poland. The conducted research indicates that the presence of chlorine (Cl2), ammonia (NH3), hydrogen sulfide (H2S), hydrogen chloride (HCl), hydrogen cyanide (HCN), nitrogen (IV) oxide (NO2), and sulfur (IV) oxide (SO2) in the atmosphere does not affect the functioning of the electrochemical CO sensor. In the case of this sensor, there was a significant cross effect in relation to hydrogen (H2). It was found that the time and manner of using the sensor affects the behavior in relation to H2. Such a relationship was not recorded for CO. Measurements in a mixture of CO and H2 confirm the effect of hydrogen on the changes taking place inside the sensor. Independently of the ratio of H2 to CO, readings of CO were flawed. All analyses showed a significant difference between the electrochemical CO sensor readings and the expected values. Only in experiments with a 1:3 mixture of CO and H2 was the relative error less than 15%. The relative error in the analyzed concentration range for a sensor with an additional compensation electrode ranged from 7% to 38%; for a sensor without this electrode, it ranged from 23% to 55%. It was ascertained that in the cases of measurements for tests carried out at higher concentrations of H2 in relation to CO, a sensor with an additional electrode is significantly better (more accurate) than a sensor without such an electrode. Differences at the significance level p = 0.01 for measurements made in the CO:H2 mixture at a ratio of 1:3 were ascertained.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3