Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates

Author:

Li Na1,Xu Gengsheng1,Yan Manqing1,Chen Bensong23,Yuan Yupeng1,Zhu Chuhong1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Anhui University, Hefei 230601, China

2. School of Chemistry & Material Engineering, Chaohu University, Chaohu 238000, China

3. Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, Chaohu University, Chaohu 238000, China

Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy has attracted increasing attention due to its high spectral reproducibility and unique selectivity to target molecules. Here, a facile approach is proposed to prepare Ag nanoparticles modified ZnO nanorod arrays (Ag/ZnO NR arrays). Ag nanoparticles were densely decorated on the surface of ZnO nanorods through silver mirror reaction and subsequent seed-assisted electrodeposition. The prepared Ag/ZnO NR arrays can be used as a sensitive, uniform, and repeatable SERS substrate for the rapid detection of organic dye molecules and biomolecules with concentrations higher than the corresponding limits of detection (LODs). The LODs for rhodamine 6G (R6G), 4-aminothiophenol (PATP) and adenine are calculated to be 1.0 × 10−13 M, 1.6 × 10−12 M and 3 × 10−11 M, respectively. The enhancement factor (EF) of the SERS substrate is estimated to be as high as ~2.7 × 108 when detecting 10−10 M R6G. Particularly, the as-synthesized substrate exhibits high selectivity to multiple components. In addition, the fabricated Ag/ZnO NR arrays can be recycled due to their superior self-cleaning ability and can realize photocatalytic degradation of R6G in water within 1 h driven by UV light, showing that the three-dimensional recyclable SERS substrates have wide applications in environmental pollution monitoring and biomedical analysis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3