Graphene nanospacer layer modulated multilayer composite structures of precious metals and their SERS performance

Author:

Mei Linyu12,Wang Zezhou,Niu Yue,Deng Wenlong,Shao Yunpeng

Affiliation:

1. North University of China

2. Taiyuan Heavy Machinery Group Co., Ltd.

Abstract

Graphene(G)-noble metal-ZnO hybrid systems were developed as highly sensitive and recyclable surface enhanced Raman scattering (SERS) platforms, in which ultrathin graphene of varying thickness was embedded between two metallic layers on top of a ZnO layer. Due to the multi-dimensional plasmonic coupling effect, the Au/G/Ag@ZnO multilayer structure possessed ultrahigh sensitivity with the detection limit of Rhodamine 6 G (R6G) as low as 1.0×10−13 mol/L and a high enhancement factor of 5.68×107. Both experimental and simulation results showed that graphene films could significantly regulate the interlayer plasmon resonance coupling strength, and single-layer graphene had the best interlayer regulation effect. Additionally, the SERS substrate structure prepared through physical methods exhibited high uniformity, the graphene component of the substrate possessed excellent molecular enrichment ability and silver oxidation inhibition characteristics, resulting in a substrate with high stability and exceptional reproducibility. The signal change was less than 15%. Simultaneously, due to the excellent photocatalytic performance of the low-cost and wide-band-gap semiconductor material ZnO, the SERS substrate exhibited exceptional reusability. Even after five cycles of adsorption-desorption, the SERS performance remained stable and maintained a reliable detection limit. The study introduced a novel approach to creating multilayer composite SERS substrates that exhibited exceptional performance, offering a new analytical tool with high sensitivity, stability, and reusability.

Funder

Key Research and Development Project Key Program of Shanxi Province, China

Fundamental Research Program of Shanxi Province

International Cooperation on Key R&D program of Shanxi Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3