Plasma-Polymerized Thiophene-Reduced Graphene Oxide Composite Film Sensor for Ammonia/Amine Detection at Room Temperature

Author:

Nadekar Baliram,Khollam Yogesh B.,Shaikh Shoyebmohamad F.ORCID,Trimukhe Ajinkya,Deshmukh Rajendra,More Pravin S.,Siddiqui Muhammad Usman Hassan,Rana Abu ul Hassan S.ORCID,Palaniswami Marimuthu

Abstract

Industrialization has led to an increasing need for specific and selective gas sensors in the past few decades. Environmental monitoring of certain volatile compounds such as ammonia is necessary. Advancements in the food storage sector have created the need for cheap and effective amine chemosensors. Classical chemosensors still face several issues, such as a lack of selectivity and low sensitivity toward ammonia and amines. Sensitivity is defined as the relative change in response expressed in percentage. In this work, we have resolved a few issues associated with the ammonia and amine sensors, such as low selectivity, long-term instability, and unreliability under higher temperatures using plasma-polymerized thiophene (PPTh) reduced graphene oxide (rGO) composite films. PPTh films were prepared using RF plasma polymerization with optimized deposition parameters. Several samples were evaluated for their sensing response to understand the optimal PPTh and rGO ratio in the PPTh-rGO composite. These composite PPTh-rGO films have shown 4 times higher sensitivity for ammonia/amines than individual PPTh and rGO films. Ammonia, methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) were primary analytes and tested for sensing response of the PPTh-rGO composite. The sensitivity measured ranges from 1328 for trimethylamine to 2354 for methylamine at 1000 ppm. The order of sensitivity was found to be MA > Ammonia > DMA > TMA. Polymer swelling, reduced charge carriers, and disruption of conductive pathways can explain possible sensing mechanisms. PPTh-rGO composite films have shown selectivity as high as 110 for ammonia/amine over other commonly used volatile organic compounds. The sensing response of these films is stable for any temperature fluctuations from 30 °C to 150 °C. Additionally, films showed stable sensitivity for over 4 months. Thus, composite films of PPTh-rGO can be effectively used to develop highly selective and stable gas sensors for the environmental monitoring of ammonia/amines.

Funder

University Grant Commission

Department of Science and Technology

Rajiv Gandhi Science and Technology Commission

King Saud University

KIST School Partnership Project, Seoul, South Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3