A Prosumer Power Prediction Method Based on Dynamic Segmented Curve Matching and Trend Feature Perception

Author:

Chen Biyun1,Xu Qi1,Zhao Zhuoli2,Guo Xiaoxuan3,Zhang Yongjun4,Chi Jingmin5,Li Canbing6

Affiliation:

1. Key Laboratory of Power System Optimization and Energy Saving Technology, Guangxi University, Nanning 530004, China

2. Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China

3. Electric Power Research Institute, Guangxi Power Grid Corporation, Nanning 530023, China

4. School of Electric Power, South China University of Technology, Guangzhou 510640, China

5. Guangxi Minhai Energy Co., Ltd., Nanning 530012, China

6. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

With the massive installation of distributed renewable energy (DRE) generation, many prosumers with the dual attributes of load and power supply have emerged. Different DRE permeability and the corresponding peak-valley timing characteristics have an impact on the power features of prosumers, so new models and methods are needed to reflect the new features brought about by these factors. This paper proposes a method for predicting the power of prosumers. In this method, dynamic segmented curve matching is applied to reduce the complexity of source–load coupling features and improve the effectiveness of the input features, and trend feature perception based on a temporal convolutional network (TCN) was applied to grasp the power trend of prosumers by predicting the multisegment trend indexes. The LST-Atten prediction model based on a temporal attention mechanism (TAM) and a long short-term memory (LSTM) network was applied to predict “day-ahead” power, which combines the trend indexes and similar curve sets as the input. Simulation results show that the proposed model has higher accuracy than individual models. Furthermore, the proposed model can maintain prediction stability under different renewable energy permeability scenarios.

Funder

Guangxi Special for Innovation-Driven Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3